ADMINISTRATION PO Box 669 Chouteau, OK 74337 918-256-5545

January 30, 2023

Ms. Hillary Young, P.E. Chief Engineer Land Protection Division Oklahoma Department of Environmental Quality (ODEQ) 707 North Robinson P.O. Box 1677 Oklahoma City, Oklahoma 73101-1677

RE: Annual Groundwater Monitoring and Corrective Action Report 2022 & Assessment of Corrective Measures Grand River Dam Authority (GRDA) Grand River Energy Center

Dear Ms. Young:

As required by the State of Oklahoma regulations governing the disposal of coal combustion residuals (CCRs) from electric utilities (OAC 252:517), please find attached the Annual Groundwater Monitoring and Corrective Action Report for calendar year 2022. This report has been prepared for the CCR Landfill located at the Grand River Energy Center (GREC) in Chouteau, Oklahoma. As required by OAC 252:517, a copy of this document will also be posted on the GRDA CCR Webpage and a copy maintained in the facility operating records.

Additionally, GRDA is pleased to submit its evaluation of the assessment of corrective measures in accordance with the requirements of OAC 252:517-9-7. GRDA would like to note that the correspondence sent on August 25, 2022, from ODEQ was not received by appropriate GRDA staff. GRDA regrets that this miscommunication occurred and has taken steps to ensure that this will not be repeated. GRDA takes its responsibility to follow all applicable laws and regulations seriously and values the working relationship with ODEQ.

GRDA respectfully requests a meeting with ODEQ in the coming weeks to discuss both the regulatory and remedial path forward on this project.

If you have any questions on this matter, or if you require any additional information, please do not hesitate to call.

Sincerely,

michael L. bednar

Michael L. Bednar Manager of Environmental Compliance

reliable ELECTRICITY, with a focus on EFFICIENCY and a commitment to ENVIRONMENTAL STEWARDSHIP.

We deliver affordable,

We are dedicated to ECONOMIC DEVELOPMENT, providing resources and supporting economic growth.

Our EMPLOYEES

are our greatest asset in meeting our mission to be an Oklahoma Agency of Excellence.

WWW.GRDA.COM

2022 Annual Groundwater Monitoring and Assessment of Corrective Measures

Grand River Dam Authority Landfill

Grand River Energy Center

Mayes County, Oklahoma

Solid Waste Permit No. 3549012

Submitted to:

Grand River Dam Authority Mayes County, Oklahoma

Submitted by:

Enercon Services, Inc. 2302 South Prospect Avenue Oklahoma City, Oklahoma 73129 Phone: 405-722-7693 Fax: 405-722-7694

January 31, 2023

ENERCON Project No. GRDA-00021

ENERCON

Table of Contents

-	
1.0	INTRODUCTION1
2.0	BACKGROUND1
3.0 PROC	STATUS OF GROUNDWATER MONITORING AND CORRECTIVE ACTION GRAM
4.0	KEY ACTIONS COMPLETED IN 2022
5.0	GROUNDWATER SAMPLING ACTIVITIES
6.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REVIEW
7.0	EVALUATION OF 2022 GROUNDWATER MONITORING DATA
8.0 FROM	STATISTICAL ANALYSIS OF ASSESSMENT MONITORING DATA AND DATA INEW MONITOR WELLS
8.1 MV\	Statistical Analysis of the April 2022 Assessment Monitoring Data using MW93-1, /93-2, MW93-3, MW03-1, and MW03-27
8.2 MV\	Statistical Analysis of the October 2022 Assessment Monitoring Data using MW93-1, /93-2, MW93-3, MW03-1, and MW03-27
8.3 Moi	Statistical Analysis of the October 2022 Site Characterization Study Data using New nitoring Wells MW22-01 through MW22-08
9.0	PROBLEMS ENCOUNTERED AND RESOLUTIONS9
10.0	ASSESSMENT OF CORRECTIVE MEASURES11
11.0	REFERENCES12
List o	of Tables
Table	1 2022 Static Water Level Survey Data

Table 2 Summa	ary of	Groundwater	Analytical	Results –	Арті	2022
---------------	--------	-------------	------------	-----------	------	------

- Table 3
 Summary of Groundwater Analytical Results October 2022
- Table 4Summary of Site Characterization Study Groundwater Monitoring Results April2022 through October 2022
- Table 5 Groundwater Seepage Velocity Calculation
- Table 6
 Statistical Analysis Summary April 2022
- Table 7
 Statistical Analysis Summary October 2022
- Table 8
 Statistical Analysis Summary using New Monitor Well Data October 2022

List of Figures

- Figure 1 Site Location and Monitor Well Location Map
- Figure 2 Groundwater Gradient April 2022
- Figure 3 Groundwater Gradient October 2022

Attachments

- Attachment A Laboratory Analytical Reports
- Attachment B Statistical Output

1.0 INTRODUCTION

This 2022 Annual Groundwater Monitoring and Corrective Measures Assessment addresses the Grand River Dam Authority (GRDA) Landfill at the Grand River Energy Center (GREC), operated by the GRDA. This report was developed in accordance with the Oklahoma Administrative Code (OAC) Title 252, Chapter 517: Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Rule (Rule), effective September 15, 2018.

Consistent with applicable sections of OAC 252:517-9, this report documents the status of the groundwater monitoring and corrective action program, summarizes key actions completed during the previous year (2022), evaluates groundwater data collected during the previous year, describes problems encountered and resolutions, and discusses corrective actions for the upcoming year (2023).

This Annual Report is being submitted to the Oklahoma Department of Environmental Quality (ODEQ) to satisfy the requirement under OAC 252:517-9-1(e) that the owner or operator of a CCR unit prepare an annual groundwater monitoring and corrective action report. This report will be placed in the GRDA Landfill operating record and on GRDA's publicly accessible CCR Website (https://www.grda.com/ccr-rule-compliance-data-and-information/).

2.0 BACKGROUND

The GREC is an electric power generating facility located approximately 3 miles east of the City of Chouteau, in Mayes County, Oklahoma. The GREC houses two coal-fired boilers (Unit No. 1 and Unit No. 2) and one combined cycle natural gas turbine (Unit No. 3). Unit #1 was retired in December 2020. Unit #2 and Unit #3 are currently operational. The GRDA Landfill is permitted by the ODEQ as a Non-Hazardous Industrial Waste (NHIW) Landfill that is allowed to accept fly ash, bottom ash, and spent powdered activated carbon used to control flue gas emissions generated at the GREC. The GRDA Landfill is situated south of the operational area within the GREC complex (Figure 1). The total landfill permit area consists of approximately 116 acres, of which only 47 acres have been utilized for CCR disposal. The landfill is underlain by alluvium deposits that consist of unconsolidated clay, silt, sand and gravel layers. The alluvium overlays sandstone/limestone bedrock.

Sampling and analysis of groundwater at the GRDA Landfill is an on-going activity that has been conducted for at least 27 years. Detection monitoring events conducted in 2018 identified and verified statistically significant increases in concentrations (SSIs) in certain wells. In accordance with OAC 252:517-9-6, an Assessment Monitoring Plan was developed and first submitted to the ODEQ on March 29, 2019. The Revised Assessment Monitoring Plan was approved by the ODEQ on January 28, 2020.

The GRDA transitioned into assessment monitoring for the second 2019 semi-annual sampling event and statistical analyses were performed on the entire data set comprising Appendix A and B constituents. In November 2021, the molybdenum, an Appendix B Constituent, demonstrated an SSI and also exceeded the GWPS in MW93-2. Arsenic, mercury, and lithium concentrations were also greater than their respective maximum contaminant level (MCL) or groundwater protection standard (GWPS) in wells MW93-2, MW03-2, and MW93-3, respectively but did not demonstrate SSIs.

Pursuant to the Oklahoma Administrative Code (OAC) Section 252:517-9-6, if Appendix B constituents are detected at an SSI and are above an MCL or GWPS, the owner must notify ODEQ of the exceedances and submit a plan for site characterization in order to develop appropriate corrective action. Additionally, there were indications that data from landfill monitor wells may not accurately represent background or downgradient groundwater conditions.

An application to modify the groundwater monitoring system including the installation of three new monitoring wells was submitted to ODEQ on April 2, 2021. In a letter dated August 19, 2021, ODEQ denied the request to modify the groundwater monitoring system. According to the ODEQ, upon the notification of an SSI, either a site characterization study/delineation of release or a demonstration of a non-landfill source is required. GRDA submitted a Proposed Site Characterization Study Plan and schedule including a soil boring investigation, additional monitor well installations, groundwater sampling and analyses activities, and aquifer testing for the Grand River Energy Center Coal Combustion Residuals Landfill on December 8, 2021.

This report summarizes the actions completed in 2022, 2022 groundwater monitoring activities, statistical analyses, and proposes a Corrective Measures Assessment Plan.

3.0 STATUS OF GROUNDWATER MONITORING AND CORRECTIVE ACTION PROGRAM

GRDA transitioned into assessment monitoring in 2019. Because groundwater concentrations of Appendix B constituents either demonstrated SSIs or were observed to be greater than MCLs or GWPSs in 2021, GRDA conducted a Site Characterization Study in 2022 to evaluate appropriate corrective measures.

4.0 KEY ACTIONS COMPLETED IN 2022

The following summarizes the communications and key actions completed in 2022:

 In a letter dated January 28, 2022, the Oklahoma Department of Environmental Quality (ODEQ) approved the December 8, 2021, proposed Plan and Schedule for the assessment of corrective measures for the GRDA landfill in accordance with Oklahoma Administrative Code (OAC) 252:517-9-7(a).

- As required within the January 28, 2022, letter from the ODEQ (described above), the proposed soil boring locations were provided to the ODEQ for review on February 16, 2022.
- Fifteen (15) soil borings and eight new monitoring wells (MW22-01 through MW22-08) were installed in March 2022 to collect additional lithologic and groundwater data to evaluate if the existing monitoring wells were constructed in the alluvium or to evaluate if well construction was compromised.
- Slug tests were conducted in April 2022 on each newly installed monitor well (MW22-01 to MW22-08) and the existing background and compliance wells (MW93-1, MW93-2, MW93-3, MW03-1, and MW03-2) to evaluate hydraulic conductivity of the surrounding formation and to assess groundwater flow velocity in the vicinity and downgradient of the landfill.
- Groundwater levels were collected in the new monitor wells MW22-01 MW22-08 and in the existing landfill background and compliance wells, MW93-1, MW93-3, MW03-1, and MW03-02 after each well was developed and surveyed. Groundwater levels were converted to elevation using surveyed top of casing elevations.
- Both the existing wells (MW93-1, MW93-2, MW93-3, MW03-1, and MW03-2) and the new wells (MW22-01 through MW22-08) were sampled in April 2022 and October 2022. The new wells were also sampled in May, June, July, August, and September to develop eight rounds of sampling data for statistical analysis.
- A Site Progress Report was completed on June 27, 2022 to present the early results of the Site Characterization Study. A response letter from ODEQ was received on August 25, 2022.
- The results of the Site Characterization plan were presented in a letter report on November 29, 2022. A response letter from ODEQ was received on January 10, 2023 indicating that further Assessment of Corrective Measures is required.
- Statistical analyses were completed on the older monitor wells using the April and October 2022 data. A statistical analysis was completed on the new monitor wells using the eight rounds of data collected between April 2022 and October 2022.

5.0 GROUNDWATER SAMPLING ACTIVITIES

In accordance with the Revised Assessment Monitoring Plan (approved January 28, 2020) and the approved Site Characterization Study Plan and Schedule for the assessment of corrective measures for the GRDA landfill, assessment groundwater monitoring events were conducted at the GRDA landfill on April 7-8, 2022 and October 3-4, 2022. For each event, groundwater samples

were collected from the five existing background and compliance wells (MW93-1, MW93-2, MW93-3, MW03-1, and MW03-2) and the eight newly installed monitor wells (MW22-01 through

MW22-08). The groundwater monitoring wells were uncapped and allowed to equilibrate for approximately 20 minutes. Static water levels and total monitoring well depths were then measured and recorded to the nearest one-hundredth of a foot using an electronic water level meter. The static water level survey data is presented in **Table 1**.

The monitoring wells were then purged and sampled using a peristaltic pump and new dedicated tubing for each monitoring well. Pump tubing was lowered to the approximate midpoint of the monitoring well screen. Purging and sampling procedures followed the United States Environmental Protection Agency (EPA) Region 1 Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (2017). Groundwater samples were collected into laboratory supplied sample containers and immediately packed on ice in an insulated container. Groundwater samples for metals analysis were collected unfiltered and unpreserved and were analyzed for total recoverable metals. Groundwater did not recharge sufficiently during purging to collect samples from monitor well MW03-1 in October 2022.

Groundwater samples (except for pH) were then submitted to Pace Analytical of Mt. Juliet, Groundwater samples (except for pH) were then submitted to Pace Analytical of Mt. Juliet, Tennessee for analysis. Groundwater pH was measured in the field within the 15-minute hold time and under ENERCON's Oklahoma Department of Environmental Quality (ODEQ) field taboratory accreditation. Quality Assurance/Quality Control (QA/QC) samples consisted of one duplicate per event.

Groundwater samples were analyzed for the following constituents:

- Appendix A: boron, calcium, chloride, fluoride, pH, sulfate, total dissolved solids (TDS),
- Appendix A: boron, calcium, children, and sodium; and specific conductivity, total alkalinity, and sodium; and
- Appendix B: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, radium 226 and 228 combined.

A summary of groundwater analytical data for the April 2022 and October 2022 assessment monitoring events for wells MW93-1. MW93-2, MW93-3, MW03-1, and MW03-2 are included as **Tables 2 and 3.** Analytical data collected during the Site Characterization Study for the new wells, MW22-01 – MW22-08, are summarized in **Table 4**. Laboratory analytical reports are included in **Attachment A**.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REVIEW

Field equipment calibration and sampling records were reviewed to evaluate adherence to the purging and sampling procedures. Review of the field notes indicated field instruments were

properly calibrated and wells were properly purged prior to sample collection. The chain of custody forms associated with the laboratory reports were reviewed for information regarding sample dates, sample identification, sample media, and date of submittal to the analytical laboratory. Review of the laboratory analytical report confirmed that the samples were received in good condition at the appropriate temperature, in the proper containers, with the appropriate preservatives, with custody seals intact, and within method-specified holding times. For the laboratory analytical report, the laboratory inserted arbitrary duplicate sample dates required by the laboratory data management system. The sample dates recorded in the laboratory analytical summary table reflect the actual duplicate (Dup) sample collection dates. Based on this review, samples were collected and delivered to the analytical laboratory according to environmental sampling protocols.

The duplicate samples collected from MW93-2 were collected and analyzed for Appendix A constituents. The relative percent difference (RPD) between the analytical results from samples MW93-2 and their respective duplicate samples were calculated. The RPDs ranged from 1 to 4.3 percent, within the typical groundwater RPD review criteria of 25 percent, indicating acceptable field and laboratory precision.

Where applicable, the method detection limit (MDL) and reported detection limit (RDL) values for the groundwater samples were corrected for the dilution factor used in the analysis. The Method and Batch Quality Control analyses were within established criteria for the laboratory methods, except where qualifiers (e.g., J-flags) are presented, thus the analytical results are characterized as accurate and precise.

7.0 EVALUATION OF 2022 GROUNDWATER MONITORING DATA

Groundwater levels were collected in the new monitor wells MW22-01 through MW22-08 and in the existing landfill background and compliance wells, MW93-1, MW93-3, MW03-1, and MW03-02. Groundwater levels were converted to elevation using surveyed top of casing elevations. The soil boring investigation indicated that MW93-2 is screened within a perched water layer within the landfill; therefore, water levels from MW93-2 were not included in the groundwater flow analysis.

Groundwater elevations in each well indicate that a groundwater divide is present near the landfill with groundwater flowing radially towards the west, south, and east. Potentiometric surface maps from the April 2022 and October 2022 sampling events are presented as **Figures 2 and 3**. Groundwater elevations for each sampling event are presented in Table 1.

Groundwater velocity at GRDA can be calculated using the following:

$$V = \frac{K \star I}{n}$$

Where:

- V = Groundwater seepage velocity (cm/s)
- K = Hydraulic Conductivity (cm/s)
- I= Hydraulic Gradient (cm/cm)
- n = Effective Porosity

Average and maximum seepage velocities were calculated using the average and maximum K values derived from the slug tests. The hydraulic gradient was calculated using the difference in water levels from upgradient monitor well MW93-1 and downgradient monitor well MW22-06 using a distance of 2,122 feet. Effective porosity was derived using the average specific yield calculated using slug test data. **Table 5** summarizes groundwater seepage velocity inputs and calculations.

The calculated groundwater seepage velocity at the Site ranges from an average of 34 feet per year up to a maximum of 145.2 feet per year.

8.0 STATISTICAL ANALYSIS OF ASSESSMENT MONITORING DATA AND DATA FROM NEW MONITOR WELLS

Statistical evaluation of the laboratory analytical results was performed in accordance with OAC 252:517-9-4(g)(3) and the Revised Assessment Monitoring Plan (approved January 28, 2020) utilizing Chemostat Statistical Analysis Software (Version 6.4.0). Statistical analyses were conducted using the Shapiro-Francia Test of Normality, Levene's equal variance test, and ANOVA (Analysis of Variance) to establish assumptions of normality and equal variance of the historical concentration data sets for each constituent. Analyses of the constituent data sets indicated that assumptions of normality and equal variance were not appropriate for all constituents, and non-parametric prediction intervals were used for inter-well and intra-well comparisons.

For the Semi-Annual and Annual Groundwater Assessment Monitoring data, inter-well analyses were conducted to compare constituent concentrations in down-gradient compliance wells (MV93-2, MV93-3, MV03-1, and MV03-2) to the concentrations observed in an up-gradient background well (MV93-1). Statistical analyses were also completed using the population of data collected from the new monitor wells (MV22-01 through MV22-08) during the Site Characterization Study. Inter-well analyses were conducted to compare constituent concentrations in downgradient compliance wells (MV22-02 through MV22-08) to the concentrations observed in an up-gradient background well (MV22-02 through MV22-08) to the concentrations observed in an up-gradient background well (MV22-01). Inter-well tests assume that concentrations observed in the background well are not impacted by site activities and represent natural groundwater conditions. Background concentrations are established by pooling a statistically significant number of historical data points from the background well to establish a maximum background concentration for each constituent analyzed. A SSI occurs if recent detected concentrations exceed the established background concentration. An intra-well

exceedance occurs when a pool of recent data demonstrates a statistically significant increasing trend when compared to a pool of historical baseline data from the same well.

Groundwater concentrations are also compared to the site-specific GWPS. The GWPS for each constituent were developed using respective MCLs, or in the case of Cobalt (Co), lead (Pb), lithium (Li), and molybdenum (Mo), the GWPS are developed using limits set forth in the United States Environmental Protection Agency's (USEPA) Coal Ash Rule (83 FR 364.35, Effective August 29, 2018). If a constituent did not have an MCL, a limit designated by the USEPA Coal Ash Rule, or if the background concentration was greater than the MCL; then the statistical background concentration was used as the GWPS.

Established background concentrations, GWPS/MCLs, and results of the statistical analysis are included in **Tables 6, 7, and 8.** A copy of the statistical output is included in **Attachment B**.

8.1 Statistical Analysis of the April 2022 Assessment Monitoring Data using MW93-1, MW93-2, MW93-3, MW03-1, and MW03-2

Statistical analysis of the April 2022 Semi-Annual Assessment Groundwater Monitoring data indicated the following:

- Inter-well exceedances (relative to background) were observed for all Appendix A constituents except calcium. Inter-well exceedances for Appendix B constituents were observed for arsenic, barium, fluoride, lithium, mercury, molybdenum, and combined radium.
- No SSIs (both an inter-well and intra-well exceedance) were observed for Appendix A constituents.
- Lithium concentrations exceeded background in MW 93-2, MW93-3, and MW03-2 and demonstrated SSIs in MW93-2 and MW03-2. Lithium concentrations in MW93-3 are greater than the GWPS/MCL but did not demonstrate a SSI in concentration.
- Mercury concentrations were greater than background in MW93-3 and MW03-2, and a SSI of mercury was observed in MW93-3. Mercury concentrations in MW03-2 were greater than the GWPS/MCL but did not demonstrate a SSI.
- Concentrations of arsenic exceeded the GWPS/MCL in MW93-2 but did not demonstrate a SSI.
- Concentrations of molybdenum exceeded the GWPS/MCL in MW93-2 but did not demonstrate a SSI.

8.2 Statistical Analysis of the October 2022 Assessment Monitoring Data using MW93-1, MW93-2, MW93-3, MW03-1, and MW03-2

Statistical analysis of the October 2022 Annual Assessment Groundwater Monitoring data indicated the following:

- Inter-well exceedances (relative to background) for several Appendix A and Appendix B constituents were observed in the compliance wells. Exceedances for every Appendix A constituent was observed except for calcium. Exceedances for Appendix B constituents include arsenic, barium, fluoride, lithium, mercury, molybdenum, and combined radium.
- SSIs of sodium and sulfate (Appendix A) were observed in MW93-2 and specific conductivity (Appendix A) in MW93-2 and MW93-3. GWPS/MCL are not established for Appendix A constituents.
- The mercury concentration in MW93-3 demonstrated an SSI but did not exceed the GWPS/MCL.
- The molybdenum concentration in MW93-2 demonstrated an SSI and also exceeded the GWPS/MCL.
- Concentrations of arsenic exceeded the GWPS/MCL in MW93-2 but did not demonstrate a SSI.
- Concentrations of lithium exceeded the GWPS/MCL in MW93-3 but did not demonstrate a SSI.

8.3 Statistical Analysis of the October 2022 Site Characterization Study Data using New Monitoring Wells MW22-01 through MW22-08

Statistical analysis of the October 2022 data was using new monitor wells MW22-01 through MW22-08 indicated the following:

- Inter-well exceedances (relative to background) for every Appendix A constituent were observed except for pH and alkalinity. SSIs of boron and calcium (Appendix A) were observed in MW22-02, and SSIs for sodium (Appendix A) were observed in MW22-05, MW22-07, and MW22-08. GWPS are not established for Appendix A constituents. Interwell exceedances for Appendix B constituents include arsenic, barium, fluoride, lithium, molybdenum, combined radium, and selenium.
- Mercury concentrations in well MW22-01 slightly exceeded the GWPS/MCL during one sampling event in early May. Concentrations did not exceed the GWPS/MCL in MW22-01 during subsequent monitoring events, and no SSIs were observed for mercury in any monitoring well.
- Concentrations of arsenic exceeded the GWPS/MCL during one sampling event in August in MW22-03. Arsenic concentrations did not exceed the GWPS/MCL in subsequent monitoring events, and no SSIs were observed for arsenic in any monitoring well.
- Radium concentrations exceeded the GWPS/MCL in MW22-03 during a May monitoring event, but were not observed in subsequent monitoring events. No SSIs were observed for radium in any monitoring well.

- Lithium concentrations in well MW22-07 slightly exceeded the GWPS during one sampling event in May. No lithium exceedances were observed in MW22-07 during subsequent monitoring events.
- Concentrations of molybdenum were greater than the GWPS/MCL but concentrations did not demonstrate a SSI.
- Concentrations of selenium were greater than the GWPS/MCL but concentrations did not demonstrate a SSI.
- Lithium concentrations in MW22-03 exceeded the GWPS/MCL during every sampling event with the exception of October. Lithium concentrations in MW22-03 did not demonstrate a SSI.
- The lithium concentration in MW22-08 was greater than the GWPS/MCL for all eight sampling events and demonstrated an SSI.
- Cobalt concentrations in the background well, MW22-01, slightly exceeded the GWPS/MCL in one monitoring event in April indicating that naturally occurring background concentrations may be greater than the GWPS/MCL.

9.0 PROBLEMS ENCOUNTERED AND RESOLUTIONS

Pursuant to the Oklahoma Administrative Code (OAC) Section 252:517-9-6, if Appendix B constituents are detected at an SSI and are above an MCL or GWPS, the owner must notify ODEQ of the exceedances and submit a plan for site characterization in order to develop appropriate corrective action. In a letter dated January 28, 2022, the Oklahoma Department of Environmental Quality (ODEQ) acknowledged the receipt of the December 8, 2021, proposed Plan and Schedule for the Site Characterization Study for the GRDA landfill in accordance with Oklahoma Administrative Code (OAC) 252:517-9-7(a). The approved Plan included a soil boring investigation, additional monitor well installations, groundwater sampling and analyses activities, and aquifer testing to determine whether the five historical landfill monitor wells had been compromised and to evaluate if there has been a release from the landfill. Site Characterization Study was conducted from March until October 2022. Groundwater assessment monitoring was conducted in April 2022 and October 2022 over the duration of the Site Characterization plan.

The results of the Site Characterization Study and 2022 Assessment Groundwater Monitoring indicate the following:

 The ash encountered below 21 feet bgs in soil boring PSB-09 confirms monitor well MW93-2 is completed in the landfill. Results of the slug tests indicate that MW93-2 is screened within a perched water unit with K values more than an order of magnitude higher than other site monitor wells. Based on the results of the soil boring investigation and the slug tests, MW93-2 appears to be screened in the landfill and should not be included in the final groundwater monitoring network for the landfill.

- Groundwater was previously thought to flow primarily towards the southeast. Groundwater elevation data collected from the eight new monitor wells indicate that groundwater flow is likely more radial in nature. The highest groundwater elevations were observed in MW93-1 and MW22-01. There appears to be a groundwater divide located in the vicinity of the landfill or slightly north of the landfill with groundwater flow towards the west, south and east.
- Arsenic and mercury concentrations in some of the older monitor wells have historically been greater than their GWPS/MCLs. Arsenic and mercury in the new monitor wells were either not detected or were detected sporadically at concentrations greater than their GWPS/MCLs, but were not detected in subsequent monitoring events. These groundwater monitoring results indicate that the arsenic and mercury detections in MW93-2, MW93-3, and MW03-2 are due to poor well construction and are not attributable to a release from the landfill.
- Lithium, molybdenum, and selenium were detected routinely at concentrations greater than the GWPS/MCL and concentrations of lithium demonstrated an SSI. The exceedances and SSI were observed in monitor wells located adjacent to or in close proximity to the landfill. No confirmed exceedances were observed in wells located further downgradient of the landfill.

Additionally, ENERCON compiled cross sections using available boring logs and survey information. Cross sections presented in Figures 4 through 8 indicate the following:

- MW93-2 is screened within suspected landfill material, and groundwater observed within the well is likely from a perched layer within the landfill. Historical maps also indicate that seeps have been observed on the southern toe of the landfill and in the vicinity of the MW93-2, further indication of a perched water layer. Groundwater levels observed within the well are also generally consistent with water levels observed in the nearby wastewater pond to the south of the well indicating that groundwater samples collected from MW93-02 are not representative of water quality in the alluvial aquifer.
- Wells MW93-1, MW93-2, and MW03-1 are generally shallow wells with screened intervals at or less than 15 feet bgs. When compared to the depths of the newer wells, it appears that these wells are also not likely completed at the top of bedrock.
- The older wells are between 20 and 30 years old. The subsurface construction and integrity of the older wells is unknown.

In addition, observations from recent groundwater sampling events indicate:

 Groundwater levels were just above the bottom of the MW03-1, and groundwater recovery was not sufficient to collect a groundwater sample. • The well pad around MW93-1 is no longer flush with ground surface, and there are indications that surface water may be infiltrating around the well casing.

Based on this, Enercon proposes the closure of the older monitoring wells MW93-1, MW93-2, MW-93-3, MW03-1 and MW03-2.

The next Semi-Annual and Annual groundwater monitoring events are planned for April and October 2023.

With Agency approval, the Assessment Groundwater Monitoring and statistical analysis will be conducted using the newly installed monitoring wells MW22-01 through MW22-08. MW22-01 will be used as the background well, and wells MW22-02 through MW22-08 will be used as compliance points. If necessary, replacement wells for MW93-1, MW03-1, and MW03-2 can be installed as part of the next steps in 2023.

10.0 ASSESSMENT OF CORRECTIVE MEASURES

The results of the 2022 Assessment Monitoring and the results of the Site Characterization Study indicate that groundwater may be impacted by a potential release of lithium, molybdenum, and selenium from the landfill. The impacts appear to be limited to wells adjacent to or in close proximity to the landfill.

Pursuant to the Oklahoma Administrative Code (OAC) Section 252:517-9-7(c), upon detection of a release from the landfill (SSI and GWPS/MCL exceedance) further assessment of corrective measures is required. The assessment of corrective measures must:

- Evaluate the performance, reliability, potential impact and exposure risk of the remedy;
- Determine the time to begin and complete the remedy, and
- Ensure that institutional requirements including any permitting or health requirements are met.

Based on these criteria and in order to evaluate appropriate remedies to address potential releases from the landfill, ENERCON proposes to complete groundwater modeling consisting of the construction of a site-specific, numerical groundwater and constituent fate and transport model to simulate the migration of landfill constituents of concern in the alluvial aquifer. The groundwater model will be used to identify a remedy or a combination of remedies that will appropriately address the landfill release, be protective of potential receptors, and fulfill regulatory requirements.

Groundwater modeling efforts will be completed using Groundwater Modeling Software (GMS) and will consist of the construction of a three-dimensional saturated groundwater flow model using the widely applied MODFLOW code and constituent transport simulations using MT3DMS. The constituent transport portion of the modeling effort will be completed using a partition coefficient

 (K_d) approach. Particle tracking simulations will be completed using MODPATH. The model structure will be a reasonable representation of hydrogeologic conditions based on observed conditions, interpreted site-specific data, available local and regional data, and other accepted

The groundwater flow will be calibrated to site conditions using data from new monitor wells published information. MW22-01 through MW22-08 and to surface water using nearby USGS gauging stations. The calibrated flow model will be used to simulate the future migration of constituents of concern in groundwater. Simulated output will be used to evaluate of the performance, reliability, potential

impact and exposure risk of the potential corrective remedies.

Potential groundwater remedies that will be modeled include but are not limited to:

The containment of impacted groundwater using groundwater extraction,

- Interceptor trenches to intercept impacted groundwater,
- Passive reactive barriers to treat impacted groundwater in situ,
- Natural attenuation of landfill constituents with enhanced monitoring utilizing background, compliance, and sentinel monitoring points, and

Source control to prevent the infiltration of water through the landfill.

Constituent transport simulations will be completed to ten, twenty and thirty year increments (or other appropriate time increments, if necessary) to evaluate remedy effectiveness, and output will be in the form of simulated iso-concentration maps mapped to the GWPS/MCL. All inputs, references, output, remedy selection, and rationale will be compiled into a report. Upon approval of the report, GRDA will begin the groundwater model.

REFERENCES 11.0

EPA, 2017. Region 1 Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Revision 4. September 19, 2017.

A&M Engineering and Environmental Services, 2018. Groundwater Sampling and Analysis Program for Grand River Dam Authority Landfill. Grand River Energy Center. Mayes County, Oklahoma. Solid Waste Permit No. 3549012. October 16, 2017. Updated January 3, 2018.

A&M Engineering and Environmental Services, 2019. Assessment Monitoring Plan for the Grand River Dam Authority Grand River Energy Center Landfill. Chouteau, Mayes County, Oklahoma. Permit No. 3549012. March 2019. Revised August 2019 and December 2019. Approved January 28, 2020.

A&M Engineering and Environmental Services, 2020. Annual Groundwater Monitoring and Corrective Action Report (Calendar Year 2019). Grand River Dam Authority Landfill. Grand River Energy Center. Mayes County, Oklahoma, Solid Waste Permit No. 3549012. January 31, 2020.

ODEQ, 2020. Letter to GRDA Re: 2019 Annual Groundwater Monitoring and Corrective Action Report (Report), Grand River Dam Authority Landfill. Mayes County, Permit Number 3549012.

GRDA, 2021. 2021 Annual Groundwater Monitoring and Corrective Action Report for Calendar Dated March 6, 2020. Year 2021. Grand River Dam Authority. Grand River Dam Authority. Grand River Energy Center,

Chouteau, Oklahoma. Dated January 2022. ENERCON, 2022. Site Characterization Study Report, Grand River Dam Authority Landfill. Mayes

County, Permit Number 3549012. Dated November 29, 2022.

Tables

Table 1 2022 Static Water Level Survey Data Grand River Dam Authority Landfill Grand River Energy Center - Mayes County, Oklahoma

										- 40	1022	9/13/	2022	10/3/	2022
				E/12/	2022	6/20	2022	7/19	2022	8/18/	GW	Depth to	GW	Depth to	GW
	é re é que	4/14/ Depth to	2022 GW	Depth to	GW	Depth to	GW	Depth to Water	Elevation	Water	Elevation	Water	Elevation	Water (ft. BTOC)	(ft. AMSL)
Cample	TOC Elevation	Water	Elevation	Water	Elevation	Ift. BTOC	(FL AMSL)	(ft. BTOC)	(R. AMSL)	(R. STOC)	(RL AMSL)	NM	NM	10.42	610.1
Location	(ft. AMSL)	(ft. BTOC)	(ft. AMSL)	(TE BIOC)	610 27	9.86	610.71	10.32	610.25	NM	NRA.	NM	NM	8.04	600.2
LULADOR 1	620.57	10.44	610.13	10.30	600.50	7.87	600.49	7.92	600.39	NM		NM	NM	16.18	592.5
NIW93-1	608.31	7.91	600.40	7.71	600.00	13.67	595.07	14.99	593.75	NM	NIVI	NIM	NM	12,32	592.6
MW 93-02	608.74	14.32	594.42	13.48	595.20	0.33	596.75	10.81	594.16	NM	NM	NINA	NM	16.89	591.0
MW93-05	604.97	7.89	597.08	7,50	597.47	13.01	594.11	15.37	592.55	NM	NM	10.02	594.70	19.68	594.0
MW03-01	607.92	13.8	594.12	13.30	594.62	13.01	597.79	18.23	595.49	18.54	595.18	19.02	595:06	14.56	595.3
MW03-02	607.52	15.55	598.16	14.87	598.85	15.95	507 75	13.31	596.63	13.9	596.04	15.00	505.05	6.51	594.8
MW22-01	613.72	13.41	596.53	11.94	\$98.00	12.16	505.05	6.57	594.80	6.39	594.9	6.29	593.00	16.57	593.3
MW22-02	509.94	6.03	595.34	4 6.21	\$95,16	6.29	555.00	15.02	594.84	15.65	594.2	15.58	594.5	10.9	591.3
MW22-03	601.37	14.30	595.5	1 12.9	5 596.94	13.3	590.00	0 10 02	592.9	5 10.15	592.0	8 10.29	591.9	22.07	583
MW22-04	609.9	14.32	594.6	5 7.1	595.05	7.72	594.5	2 22.7	585.4	6 23.03	584.7	3 23.09	584.6	10.30	583
MW22-05	602.23	7.58	596.6	3 20.0	2 587.74	20.69	587.0	/ 22.3	584.1	0 19.28	584.0	9 19.3	584.0	/ 19,50	5031
MW22-06	607.76	21.13	560.0	c 17.1	5 585.2	18.24	585.1	3 19.27	504.1	7 831	591.7	8 8.34	591.7	5 8,73	
MW22-07	603,37	18.02	585.5	75	0 592.5	9 7.8	592.2	9 8.62	391.4	0.01					
MW22-08	600.09	7.28	592.8	///											

AMSL - above mean sea level

BTOC - below top of casing ft - feet

Table 2
Summary of Semi-Annual Groundwater Monitoring Results - April 2022
Grand River Dam Authority Landfill
Grand River Energy Center - Mayes County, Oklahoma

							MM/93-2	MW93-03	MW03-01	MW03-02
	die A or B	Analyte	Units	Background	GWPS/MCL	MW93-01	144	590	40.8	230
Sample Date	Appendix A or B	Alkalinity	mg/L	550	NA	406	1.47	0.07651	<0.2	<0.2
04/08/2022	A	Boron	mg/L	0.499	NA	0.321	220	80.2	10.8	291
04/08/2022	A	Calcium	mg/L	670	NA	227	1400	281	0.9421	440
04/08/2022	A	Chlorido	me/L	63	NA	14.3	1460	1900	81	1720
04/08/2022	A	Childred Calide	mp/l	1130	NA	1130	10000	6 70	62	6.74
04/08/2022	A	Dissolved Solids	511	7.17	NA	7.07	8.82	0.75	9.32	161
04/08/2022	A	рн	mall	130	NA	84.8	2580	554	2440	115
04/08/2022	A	Sodium	mg/c	1888	NA	1560	13700	2160	2.971	371
04/08/2022	A	Specific Conductance	umnos/cii	880	NA	452	4920	202	2.925	0.07461
04/08/2022	A	Sulfate	mg/L	0.75	4.0	0.194	0.375 J	0.19	KU.15	<0.00500
04/08/2022	A,B	Fluoride	mg/L	Detection	0.01	<0.00500	<0.00500	<0.00500	<0.00500	<0.0000
04/08/2022	В	Antimony	mg/L	Detection	0.01	0.000291	0.0213	0.000685	0.0004551	0.001
04/08/2022	В	Arsenic	mg/L	0.0105	20	0.0199	0.141	0.064	0.0301	0.0301
04/08/2022	В	Barium	mg/L	0.0405	0.004	<0.00100	<0.00100	<0.00100	<0.00100	20.00100
04/08/2022	В	Beryllium	mg/L	Detection	0.005	0.000376	<0.001	< 0.001	<0.001	<0.001
04/08/2022	B	Cadmium	mg/L	Detection	0.003	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200
04/08/2022	B	Chromium	mg/L	Detection	0.1	<0.002	<0.002	<0.002	<0.002	<0.002
04/08/2022	B	Cobalt	mg/L	Detection	0.006	<0.002	<0.002	<0.002	<0.002	<0.002
04/08/202		Lead	mg/L	Detection	0.15	0.0236	0.0304	0.135	<0.015	0.0346
04/08/202	2 0	Lithium	mg/L	0.0236	0,04**	0.0230	<0.0002	0.00094	5 <0.0002	0.00285
04/08/202	2 0	Mercury	mg/L	0.0002	0.002	20.0002	1 48	0.000858	J <0.005	<0.005
04/08/202	2 8	Molybdenum	mg/L	0.01	0.01**	<0.003	0.00112	<0.002	<0.002	< 0.002
04/08/202	2 B	Selenium	pCI/L	2.24	5	<0.002	0.00112	<0.0010	0 <0.00100	< 0.00100
04/08/202	2 B	Thallium	mg/L	Detection	0.05	<0.0010	A 77	0.555	1.033	2.337
04/08/202	2 B	Cambined Radium	mg/L	Detection	0.002	ND	4.//	0.000	-	
the local		Compiled Nation			1 1					

 Bit Combined Radium
 mg/L
 Detection
 0.002
 tree

 04/08/2022
 B
 Combined Radium
 mg/L
 Detection
 0.002
 tree
 1

 Constituents that exceed the Maximum Contaminant Level (MCL) are in bold.
 Constituents that exceed the Background Concentration derived from MW93-1 are in gray.
 NA - Not Applicable
 ND - Constituent Not Detected

 J: The identification of the analyte is acceptable; the reported value is an estimate.
 V: The sample concentration is too high to evaluate

Table 3 Summary of Annual Groundwater Monitoring Results - October 2022 Grand River Dam Authority Landfill Grand River Energy Center - Mayes County, Oklahoma

Sample Date	Appendix A or B	Analyte	Units	Background	GWP5/MCL	MW93-01	MW93-2	MW93-2 DUP	MW93-03	MW03-01	MW03-02
10/04/2022	A	Alkalinity	mg/L	550	NA	405	83,8	83,4	581	DRY	219
10/04/2022	A	Boron	mg/L	0,499	NA	0,338	1.92	1,84	0.0927 J	DRY	<0.2
10/04/2022	A	Calcium	mg/L	670	NA	223	235	217 V	75,2	DRY	257
10/04/2022	A	Chloride	mg/L	63	NA	14.9	1590	1580	186	DRY	370
10/04/2022	A	Dissolved Solids	mg/L	1130	NA	1000	8300	8060	1230	DRY	2060
10/04/2022	A	Hq	su	7.17	NA	6.64	8.48	NA	6.55	DRY	6.53
10/04/2022	A	Sodium	mg/L	130	NA	99.5	3140	2860 V	381	DRY	168
10/04/2022	A	Specific Conductance	umhos/cm	1888	NA	1500	13500	13600	2020	DRY	2110
10/04/2022	A	Sulfate	mg/L	880	NA	446	5470	5690	217	DRY	363
10/04/2022	A.B	Fluoride	mg/L	0,25	4.0	0.162	<3	<3	0.278	DRY	<0.15
10/04/2022	В	Antimony	mg/L	Detection	0.01	< 0.00500	< 0.00500	<0.00500	<0.00500	<0.00500	<0.00500
10/04/2022	В	Arsenic	mg/L	0.0109	0.01	0.000393	0.0556	0.0535	0.000641 J	DRY	< 0.001
10/04/2022	В	Barium	mg/L	0.0405	2.0	0.0189	0.132	0.127	0,0503	DRY	0.0281
10/04/2022	В	Beryllium	mg/L	Detection	0.004	< 0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
10/04/2022	В	Cadmium	mg/L	Detection	0.005	0.000631	< 0.01	<0.01	<0.001	DRY	<0.001
10/04/2022	В	Chromium	mg/L	Detection	0.1	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
10/04/2022	В	Cobait	mg/L	Detection	0.006**	< 0.002	<0.02	<0.02	0.000143 J	DRY	< 0.002
10/04/2022	В	Lead	mg/L	Detection	0.15**	<0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002
10/04/2022	В	Lithium	mg/L	0.0236	0.04**	<0.015	0.0151	0.0146 J	0.137	DRY	0.00861 J
10/04/2022	В	Mercury	mg/L	0.0002	0.002	<0.0002	<0.0002	<0.0002 J6 O1	0.00103	DRY	0.0014
10/04/2022	В	Molybdenum	mg/L	0.01	0.01**	0.00108	1.97	1.87	<0.005	DRY	<0.005
10/04/2022	В	Selenium	pCi/L	2.24	5	<0,002	<0,02	<0.02J3 J6	<0.002	DRY	<0.002
10/04/2022	В	Thallium	mg/L	Detection	0,05	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0,00100
10/04/2022	В	Combined Radium	mg/L	Detection	0.002	0,0893	2.049	3.48	0.282	DRY	0.75

Constituents that exceed the Maximum Contaminant Level (MCL) are in bold. Constituents that exceed the Maximum Concentration derived from MW93-1 are in gray.

NA - Not Applicable

ND - Constituent Not Detected J: The identification of the analyte is acceptable; the reported value is an estimate. V: The sample concentration is too high to evaluate

		Well	ID		MW22-01		MW22-02		MW22-03		MW22-04		MW22-05	Ι	MW22-06		MW22-07	Ι	MW22-08
		Sample	Date		4/7/2022		4/7/2022		4/7/2022		4/7/2022		4/7/2022		4/7/2022		4/7/2022		4/7/2022
Analyte		Units	Background	GWPS/MCL	Result		Result		Result		Result		Result		Result		Result		Result
Alkalinity	A	mg/L	637	NA	637	1	277		216		96.2		212		276		297		437
Boron	A	mg/L	0.339	NA	0.247		1.87		0.109	J	<0.200		<0.200		<0.200	Į.	<0.200		0.184 J
Calcium	A	mg/L	323	NA	323		238		122	113	59.4		269		245		87.6		73.3
Chloride	A	mg/L	10.2	NA	6.41		240		539		32.3		1060		153		5,98		165
TDS	A	mg/L	1230	NA	1230	1	4530		1230	ĺ.	322		2640		1030		519		1140
рН	A	SU	7.2	NA	7.2		7.3		6.6		6.92		6.75		7.07		6.96		7.4
Sodium	A	mg/L	102	NA	27.1		1070		303		27.9		403		58.8		81.6		309
Conductivity	A	umhos/cm	1690	NA	1690		6290		2400		527		3840		1500		827		1880
Sulfate	A	mg/L	385	NA	353		2460		137		86.2		28.1		291		160		273
Fluoride	A,B	mg/L	0.187	4.0	0.112	J	<1.50		<0.150		0.114	3	0.122	J	0.0837	J	0.166		0.227
Antimony	В	mg/L	0.005	0.01	<0.00500		<0.00500		<0.00500	Ċ.	<0.00500		<0.00500		<0.00500		<0.00500		<0.00500
Arsenic	В	mg/L	0.0009	0.01	0.000639	J	0.000948	J	0.00073	J	0.000632	J	0.00115		0.000247	J	0.000522	J	0.000622 J
Barium	В	mg/L	0.0621	2.0	0.0621	Ľ)	0.0435		0.269		0.108		0.484		0.121		0.0944		0.104
Beryllium	В	mg/L	Detection	0.004	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100
Cadmium	В	mg/L	0.001	0.005	0.000263	J	<0.00100		0.000341	1	<0.00100	L	0.000395	l	<0.00100		<0.00100		<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200	L	<0.0200		<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.00536		0.000914	J	0.0062		0.000256	J	0.00755		<0.00200		0.000229	J	0.00183 J
Lead	В	mg/L	0.002	0.15**	<0.00200		<0.00200	L	<0.00200		<0.00200		0.0012	J	<0.00200	L	<0.00200		<0.00200
Lithium	В	mg/L	0.037	0.04**	0.037	Û	0.0441	L	0.0597		0.0171		0.033		0.0284	L	0.0104	1	0.077
Mercury	В	mg/L	0.0002	0.002	<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200
Molybdenum	В	mg/L	0.005	0.01**	0.000852	J	0.113	L	<0.00500		<0.00500	L	0.000894	J	<0.00500	L	<0.00500		0.00224
Radium	В	pCi/L	3.838	5	0.65	l, i	1.138		0.766		0.802		1.064		1.945		1.644		1.175
Selenium	B	mg/L	0.002	0.05	<0.00200		0.17		<0.00200		<0.00200		<0.00200	L	<0.00200		0.00188	1	<0.00200
Thallium	В	mg/L	0.001	0.002	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100

		Well	D		MW22-01		MW22-02		MW22-03	3	MW22-04		MW22-05		MW22-06	Τ	MW22-07	Τ	MW22-08
-		Sample	Date		05/09/202	2	05/09/202	2	05/09/202	22	05/09/2022	2	05/09/2022	2	05/09/2022	2	05/09/2022	2	05/09/2022
Analyte		Units	Background	GWPS/MCL	Result		Result		Result	ļ	Result		Result		Result		Result		Result
Alkalinity	A	mg/L	637	NA	631		367		216		382		154		274		308	Τ	422
Boron	Α	mg/L	0.339	NA	0.339		2.93		0.126	IJ	0.0953	J	<0.200		<0.200		0.0811	١	0.171 J
Calcium	A	mg/L	323	NA	304	۷	236		144		73.9		251		216		57		66.9
Chloride	Α	mg/L	10.2	NA	7.86		244		937		43.5		1090		136		2.41		172
TDS	A	mg/L	1230	NA	1120		4750		2060	Q	900		2480		945		440		1030
pН	A	SU	7.2	NA	6.99		7.6		6.94		7.26		6.7		7.19		6.53		7.55
Sodium	A	mg/L	102	NA	31.7	۷	1600		495		239		413		61.6		90.4		316
Conductivity	A	umhos/cm	1690	NA	1620		7590		3570		1440		3720		1460		730		1790
Sulfate	A	mg/L	385	NA	355		3480		124		308		17.4		263		87		253
Fluoride	A,B	mg/L	0.187	4.0	0.163		0.397	J	<0.150		0.407		0.12	J	0.124	J	0.375		0.255
Antimony	В	mg/L	0.005	0.01	<0.00500		<0.00500		<0.00500	Ľ	<0.00500		<0.00500		<0.00500		<0.00500		<0.00500
Arsenic	В	mg/L	0.0009	0.01	0.000949	1	0.00231		0.00292		0.000787	J	0.000327	J	0.000381	J	0.000517	J	0.000463 J
Barium	В	mg/L	0.0621	2.0	0.0554		0.0691		0.191		0.0487		0.456	U	0.0798		0.0961		0.0993
Beryllium	В	mg/L	Detection	0.004	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100
Cadmium	B	mg/L	0.001	0.005	<0.00100		<0.00100		<0.00100	L	<0.00100		0.000252	1	<0.00100		<0.00100		<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.00738		0.000686	L	0.00774		0.000277	J	0.00433		<0.00200		<0.00200		0.0013 J
Lead	В	mg/L	0.002	0.15**	0.000601	J	<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200
Lithium	В	mg/L	0.037	0.04**	0.0177		0.0325		0.149		0.018	Ü	0.0211		0.019		0.00925	J	0.0913
Mercury	В	mg/L	0.0002	0.002	<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200
Molybdenum	В	mg/L	0.005	0.01**	0.000873	L	0.372	L	<0.00500		0.00196	IJ	<0.00500		<0.00500		<0.00500		0.00208 J
Radium	В	pCi/L	3.838	5	1.3967		3.002		7.61		1.307		1.517		0.752		0.836		0.497
Selenium	В	mg/L	0.002	0.05	<0.00200		0.469		<0.00200		0.000769	J	<0.00200		<0.00200		0.00304		<0.00200
Thallium	B	mg/L	0.001	0.002	<0.00100		0.000366	J	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100

		Well	ID		MW22-0	1	MW22-02	Τ	MW22-03		MW22-04	Τ	MW22-05	MW22-06	M	W22-07	MW22-08	M	N22-08 DU
	1	Sample	Date		05/31/202	22	05/31/2022	2	05/31/202	2	05/31/2022	2	05/31/2022	05/31/2022	05/	31/2022	05/31/2022	0	5/31/2022
Analyte		Units	Background	GWPS/MCL	Result		Result	Τ	Result		Result		Result	Result	1	Result	Result		Result
Alkalinity	Α	mg/L	637	NA	555		225	T	245		175	Τ	149	269		299	404		412
Boron	Α	mg/L	0.339	NA	0.213		3.08	Τ	0.11	1	0.0578	J	<0.200	<0.200	0).172 J	<0.200		0.0958 J
Calcium	A	mg/L	323	NA	309		297	Τ	241	۷	78.8	Τ	249	232		59.8	65.4		64.4
Chloride	Α	mg/L	10.2	NA	8.14		219	Τ	1840		50.6	Ι	1160	161		3,25	198		189
TDS	Α	mg/L	1230	NA	1000	J3	3680		3680	Q	613		1800	932		408	984		996
pH	Α	SU	7.2	NA	7.2		7.46		7.2		6.76		6.4	6.52		7,16	7.42		7.42
Sodium	A	mg/L	102	NA	25.3		1710		856	۷	121		380	61.2		78.3	304	1	294
Conductivity	Α	umhos/cm	1690	NA	1510		8010		6040		1030		3740	1450		692	1780	1	1820
Sulfate	A	mg/L	385	NA	385		4120		134		275		18.1	300		77	275		276
Fluoride	A,B	mg/L	0.187	4.0	0.169		0.678	J	0.0735	J	0.159		0.115 J	0.102		0.35	0.296		0.217
Antimony	В	mg/L	0.005	0.01	<0.00500		<0.00500		<0.00500		<0.00500		<0.00500	<0.00500	<0.	.00500	<0.00500	<	:0.00500
Arsenic	В	mg/L	0.0009	0.01	0.000386	l	0.00233		0.00711		0.000355	J	0.000227 J	0.00028	0.0	00596 J	0.000432	J	0.000402 J
Barium	В	mg/L	0.0621	2.0	0.0431		0.0635		0.274		0.0731		0.461	0.0765	0).106	0.0801		0.0791
Beryllium	В	mg/L	Detection	0.004	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100	<0.00100	<0.	.00100	<0.00100	<	<0.00100
Cadmium	В	mg/L	0.001	0.005	<0.00100		<0.00100		<0.00100		<0.00100		0.000256	<0.00100	<0.	.00100	<0.00100	<	<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200		<0.0200		<0.0200		<0.0200		<0.0200	<0.0200	<0	0.0200	<0.0200		<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.00402		0.000493	J	0.00663		<0.00200		0.00349	<0.00200	<0	.00200	0.000717	1 0	0.000695 J
Lead	В	mg/L	0.002	0.15**	<0.00200		<0.00200		<0.00200		<0.00200		<0.00200	<0.00200	<0	.00200	<0.00200	-	<0.00200
Lithium	В	mg/L	0.037	0.04**	0.018		0.0285		0.271		0.0139	J	0.0181	0.0158	0	0.086	<0.0150	+	<0.0150
Mercury	В	mg/L	0.0002	0.002	<0.000200		<0.000200		<0.000200		<0.000200		<0.000200	<0.000200	<0.	000200	<0.000200	<	0.000200
Molybdenum	В	mg/L	0.005	0.01**	<0.00500		0.48		0.0014	1	<0.00500		<0.00500	<0.00500	<0	.00500	0.00172	1	0.00149 J
Radium	В	pCi/L	3.838	5	1.501		1.785		2.62		1.062		1.661	1.058	0	0.793	0.627		0.9198
Selenium	В	mg/L	0.002	0.05	<0.00200		0.0864		<0.00200		<0.00200		<0.00200	<0.00200	0.	00249	<0.00200		<0.00200
Thallium	В	mg/L	0.001	0.002	<0.00100		0.000398	1	<0.00100		<0.00100		<0.00100	<0.00100	<0	.00100	<0.00100	<	<0.00100

		Well	ID		MW22-01	MW22-02	MW22-03	MW22-04	1	MW22-04 DU	MW22-05	MW22-06	MW22-07	MW22-08
		Sample	Date		06/20/2022	06/20/2022	06/20/2022	06/20/202	2	06/20/2022	06/20/2022	06/20/2022	06/20/2022	06/20/2022
Analyte		Units	Background	GWPS/MCL	Result	Result	Result	Result		Result	Result	Result	Result	Result
Alkalinity	Α	mg/L	637	NA	532	212	245	222		208	196	264	281	397
Boron	Α	mg/L	0.339	NA	0.139 J	3.08	0.0975	0.0609	J	0.0556 J	<0.200	<0.200	0.136 J	0.163 J
Calcium	Α	mg/L	323	NA	306	339	343	89.4	۷	89.5	280	241	68	66.6
Chloride	Α	mg/L	10.2	NA	8.03	261	2440	32.3		33.8	1630	158	3,41	192
TDS	Α	mg/L	1230	NA	1010	6030	4520	648		639	1800	904	391	976
pН	Α	SU	7.2	NA	7.2	8.02	7.86	7.31		7.31	7.19	7.72	7.67	8.02
Sodium	Α	mg/L	102	NA	24.6	1840	1240	136	۷	136	443	65.4	69.5	323
Conductivity	Α	umhos/cm	1690	NA	1420	8320	7750	1030		1020	3950	1460	660	1790
Sulfate	A	mg/L	385	NA	357	4300	101	263		260	28.9	298	68.5	233
Fluoride	A,B	mg/L	0.187	4.0	0.17	<1.50	<0.150	0.189		0.181	0.123 J	0.115]	0.321	0.202
Antimony	В	mg/L	0.005	0.01	<0.00500	<0.00500	<0.00500	<0.00500		<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
Arsenic	В	mg/L	0.0009	0.01	0.000436 J	0.00307	0.0083	0.000569	L	0.00044	0.000324 J	0.000435 J	0.000611 J	0.000583 J
Barium	В	mg/L	0.0621	2.0	0.0399	0.0687	0.382	0.0662		0.0661	0.515	0.079	0.119	0.0712
Beryllium	В	mg/L	Detection	0.004	<0.00100	<0.00100	<0.00100	<0.00100		<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Cadmium	В	mg/L	0.001	0.005	<0.00100	<0.00100	<0.00100	<0.00100		<0.00100	0.000236 J	<0.00100	<0.00100	<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200	<0.0200	<0.0200	<0.0200		<0.0200	<0.0200	<0.0200	<0.0200	<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.00303	0.000575	J 0.00667	0.000144	J	<0.00200	0.00298	<0.00200	<0.00200	0.000525 J
Lead	В	mg/L	0.002	0.15**	<0.00200	<0.00200	<0.00200	<0.00200		<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
Lithium	В	mg/L	0.037	0.04**	0.0132 J	0.0274	0.367	0.0143	L	0.014	0.0188	0.0169	<0.0150	0.0896
Mercury	В	mg/L	0.0002	0.002	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200	<0.000200	<0.000200	<0.000200	<0.000200
Molybdenum	В	mg/L	0.005	0.01**	<0.00500	0.634	0.00226	J 0.000927	IJ	<0.00500	<0.00500	<0.00500	<0.00500	0.00111 J
Radium	В	pCi/L	3.838	5	3.838	1.126	4.45	0.438		0.985	1.762	0.747	0.835	ND
Selenium	В	mg/L	0.002	0.05	<0.00200	0.0733	<0.00200	0.000515	1	<0.00200	<0.00200	<0.00200	0.0016	<0.00200
Thallium	В	mg/L	0.001	0.002	<0.00100	0.000535	J <0.00100	<0.00100		<0.00100	<0.00100	<0.00100	<0.00100	<0.00100

		Well	D		MW22-01	Τ	MW22-02	Ι	MW22-03		MW22-04	I	MW22-05	Τ	MW22-06	Τ	MW22-07	Ι	MW22-08
		Sample	Date		07/18/2022	Ţ	07/18/2022	2	07/18/2022	2	07/18/2022	2	07/18/2022		07/18/2022	!	07/18/2022	!	07/18/2022
Analyte		Units	Background	GWPS/MCL	Result		Result		Result		Result		Result		Result		Result		Result
Alkalinity	A	mg/L	637	NA	514		360		249		123		236		262		278		393
Boron	A	mg/L	0.339	NA	0.107	J	2.94		0.106	J	0.0434	J	<0.200		<0.200		0.0881	J	0.168 J
Calcium	Α	mg/L	323	NA	269		307		306		75.3		247		208		110	1	59.6
Chloride	A	mg/L	10.2	NA	9.12		278		2420		35.6		1200		156		10.1	1	202
TDS	A	mg/L	1230	NA	956		4880		4190		500		2950		932		638		1020
pН	A	\$U	7.2	NA	6.9		7.42		7.6		6.71		7.07		7.32		7.34	1	7.7
Sodium	A	mg/L	102	NA	24.1		1310		1090		69		466		58.4		88.7	1	291
Conductivity	A	umhos/cm	1690	NA	1440		7660		7700		790		4050		1440		983	1	1760
Sulfate	A	mg/L	385	NA	326	Ì	3450		99.7		211		50.3		282		224	1	226
Fluoride	A,B	mg/L	0.187	4.0	0.163		<1.50		0.083	J	0.112	J	0.162		0.11	J	0.178		0.21
Antimony	В	mg/L	0.005	0.01	<0.00500		<0.00500		<0.00500		<0.00500		<0.00500	1	<0.00500		<0.00500	1	<0.00500
Arsenic	8	mg/L	0.0009	0.01	0.000347	3	0.00217		0.00952		0.000399	1	0.000234	1	0.000317	1	0.000502	1	0.000506 J
Barium	В	mg/L	0.0621	2.0	0.0365		0.0562	Û	0.346		0.0742		0.45	1	0.0692		0.0742	4	0.0659
Beryllium	В	mg/L	Detection	0.004	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100	4	<0.00100		<0.00100	1	<0.00100
Cadmium	В	mg/L	0.001	0.005	<0.00100		<0.00100	Ű.	<0.00100		<0.00100		0.000323	J	<0.00100		<0.00100	_	<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200		<0.0200		<0.0200	L	<0.0200		<0.0200		<0.0200		<0.0200	_	<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.00308		0.000543	J	0.00582		<0.00200		0.00138	1	<0.00200		0.0002	1	0.000454
Lead	В	mg/L	0.002	0.15**	<0.00200		<0.00200		<0.00200	L	<0.00200		<0.00200	4	<0.00200		<0.00200		<0.00200
Lithium	В	mg/L	0.037	0.04**	0.0136	J	0.0282		0.368		0.0106	J	0.0181	4	0.0147	J	0.00896	1	0.0893
Mercury	B	mg/L	0.0002	0.002	<0.000200		<0.000200		<0.000200	L	<0.000200		<0.000200	_	<0.000200		<0.000200		<0.000200
Molybdenum	В	mg/L	0.005	0.01**	<0.00500	L	0.424	, Î	0.00222	1	<0.00500		<0.00500	_	<0.00500		<0.00500		0.00126 J
Radium	В	pCi/L	3.838	5	1.9077		0.494	ļ	4.1		1.3		1.688		0.461		0.5542		0.496
Selenium	B	mg/L	0.002	0.05	<0.00200		0.0275		<0.00200	L	<0.00200		<0.00200		<0.00200	L	<0.00200		<0.00200
Thallium	В	mg/L	0.001	0.002	<0.00100		0.000447	1	<0.00100	Ţ	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100

Table 4

		Well	ID		MW22-01	Τ	MW22-02		MW22-03		MW22-04	1	MW22-05	i	MW22-06		VIW22-06 DU	MW22-07	MW22-08
		Sample	Date		08/18/2022	2	08/18/202	2	08/18/202	2	08/18/202	22	08/18/202	2	08/18/202	2	08/18/2022	08/18/2022	08/18/2022
Analyte		Units	Background	GWPS/MCL	Result		Result		Result		Result		Result		Result		Result	Result	Result
Alkalinity	Α	mg/L	637	NA	552	Τ	414		271		115		373		293		288	318	424
Boron	Α	mg/L	0.339	NA	0.093	1	3.16		0.177	J	<0.200		<0.200		<0.200		<0.200	0.0798 J	0.167 J
Calcium	Α	mg/L	323	NA	264		338		134		72.8		240		210		223	137	59.9
Chloride	Α	mg/L	10.2	NA	9.45		305		858		38		1140		140		144	13.8	209
TDS	Α	mg/L	1230	NA	978		6270	Q	1560	Q	491	Q	2310	Q	851	Q	940	813] 1050 Q
pН	Α	SU	7.2	NA	6.5		6.92		6.63		6.26		6.82		6.93		6.93	6.87	7.27
Sodium	Α	mg/L	102	NA	24.8		1540		455		59.2		529	l.	58.8		58.6	100	296
Conductivity	Α	umhos/cm	1690	NA	1420		7840		3440		755		4160		1350		1380	1130	1750
Sulfate	Α	mg/L	385	NA	320	1	3780		199		194		104		261		275	324	225
Fluoride	A,B	mg/L	0.187	4.0	0.176		0.232		<0.150		0.104	J	0.172		0.11	1	0.093	0.152	0.235
Antimony	В	mg/L	0.005	0.01	<0.00500		<0.00500		<0.00500		<0.00500		<0.00500		<0.00500		<0.00500	<0.00500	<0.00500
Arsenic	В	mg/L	0.0009	0.01	0.000348	J	0.00165		0.0106		0.000352	L	0.00022	J	0.000344	J	0.000269	0.000314 J	0.000504 J
Barium	В	mg/L	0.0621	2.0	0.0373		0.0444		0.189		0.0719	L	0.388		0.0721		0.0742	0.0719	0.0737
Beryllium	В	mg/L	Detection	0.004	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100	1	<0.00100		<0.00100	<0.00100	<0.00100
Cadmium	В	mg/L	0.001	0.005	<0.00100	1	<0.00100		<0.00100		<0.00100		0.000165	J	<0.00100		<0.00100	<0.00100	<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200	<0.0200	<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.0032	Ĩ,	0.000412	1	0.00653		<0.00200		0.000238	J	<0.00200		<0.00200	<0.00200	0.000499 J
Lead	В	mg/L	0.002	0.15**	<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200	<0.00200	<0.00200
Lithium	В	mg/L	0.037	0.04**	0.00837	J	0.0237		0.128		0.0118	IJ	0.0153		0.0108	1	0.00802	0.00712 J	0.0962
Mercury	В	mg/L	0.0002	0.002	<0.000200		<0.000200		<0.000200		<0.000200	L	<0.000200		<0.000200		<0.000200	<0.000200	<0.000200
Molybdenum	В	mg/L	0.005	0.01**	<0.00500		0.32		0.00117	J	<0.00500		<0.00500		<0.00500		<0.00500	<0.00500	0.00105 J
Radium	В	pCi/L	3.838	5	1.255		2.157		2.34		0.779		2.448		1.971		1.67	0.859	2.455
Selenium	В	mg/L	0.002	0.05	<0.00200		0.032		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200	<0.00200	<0.00200
Thailium	В	mg/L	0.001	0.002	<0.00100		0.000392	1	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100	<0.00100	<0.00100

Well ID			MW22-01	٦	MW22-02		MW22-03		MW22-04		MW22-05	Ι	MW22-06		MW22-07	Ι	MW22-08		
Sample Date			09/13/2022		09/13/2022	2	09/13/202	2	09/13/2022	2	09/13/2022	2	09/13/2022	2	09/13/2022	2	09/13/2022		
Analyte		Units	Background	GWPS/MCL	Result		Result		Result		Result		Result		Result		Result		Result
Alkalinity	A	mg/L	637	NA	514		381		226		97.1		365		269		301		391
Boron	Α	mg/L	0.339	NA	0.106	J	3.03		0,174	J	<0.200		<0.200		<0.200		0.0888	J	0.166 J
Calcium	Α	mg/L	323	NA	270		334		133	V	71.4		230		201		134		59.5
Chloride	Α	mg/L	10.2	NA	8.96		302		826		40.2		1090		141		14.1		195
TDS	A	mg/L	1230	NA	968		7930		1590		431	Ĩ.	2160		812	Ú	755		1000
pН	Α	SU	7.2	NA	6.64		7.02		6.61		6.38		6.95		7.02		6.95		7.35
Sodium	A	mg/L	102	NA	25.7		1640		473	V	58.6		539		57.8		102		316
Conductivity	A	umhos/cm	1690	NA	1450		8060		3360		700		4180		1350		1190		1780
Sulfate	A	mg/L	385	NA	324		3680		167		162		103		252		343		205
Fluoride	A,B	mg/L	0.187	4.0	0.169		<1.50		0.0648	J	0.0839	J	0.188		0.0773	J	0.141	J	<0.750
Antimony	В	mg/L	0.005	0.01	<0.00500		<0.00500	Ì,	<0.00500		<0.00500		<0.00500		<0.00500		<0.00500		<0.00500
Arsenic	В	mg/L	0.0009	0.01	0.000382	J	0.00208		0.00662		0.00068	J	0.000266	J	0.000288	1	0.00036	J	0.000502 J
Barium	В	mg/L	0.0621	2.0	0.0349		0.0381		0.245		0.0745		0.357		0.0643		0.056		0.0708
Beryllium	В	mg/L	Detection	0.004	<0.00100		<0.00100		< 0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100
Cadmium	В	mg/L	0.001	0.005	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100		<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200		<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.00344		0.000502	J	0.00657		0.000221	J	0.000196	J	<0.00200		<0.00200		0.00062 J
Lead	В	mg/L	0.002	0.15**	<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200
Lithium	В	mg/L	0.037	0.04**	0.00773	J	0.023		0.114		0.00973	1	0.0138	J	0.00796	1	0.00868	1	0.097
Mercury	В	mg/L	0.0002	0.002	<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200		<0.000200
Molybdenum	В	mg/L	0.005	0.01**	<0.00500		0.216		<0.00500		<0.00500		<0.00500		<0.00500		<0.00500		0.00109 J
Radium	В	pCi/L	3.838	5	0.432		0.008		1.867		0.693		1.873		1.6071		1.157		ND
Selenium	B	mg/L	0.002	0.05	<0.00200		0.0641		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200		<0.00200
Thallium	В	mg/L	0.001	0.002	<0.00100		0.000441	J	<0.00100		<0.00100		<0.00100		<0.00100		<0.00100	ij,	<0.00100

Table 4

Well ID		MW22-01	MW22-02	MW22-03	MW22-04	MW22-05	MW22-06	MW22-07	MW22-08			
Sample Date		10/03/2022	10/03/2022	10/03/2022	10/03/2022	10/03/2022	10/03/2022	2 10/03/2022	10/03/2022			
Analyte		Units	Background	GWPS/MCL	Result	Result	Result	Result	Result	Result	Result	Result
Alkalinity	A	mg/L	637	NA	517	371	200	88.5	377	266	303	393
Boron	A	mg/L	0.339	NA	0.0962 J	3.25	0.209	<0.200	<0.200	<0.200	0.0895	0.19 J
Calcium	A	mg/L	323	NA	275	370	57.4	65.5	251	208	152	60.7
Chloride	A	mg/L	10.2	NA	10.2	327	132	43.1	1070	135	15.2	194
TDS	A	mg/L	1230	NA	864	6320	684	408	2290	847	739	1080
pН	A	SU	7.2	NA	6.4	6.74	6.08	6.14	6.74	6.79	6.68	7.08
Sodium	A	mg/L	102	NA	29.1	1780	189	51.9	605	62	121	328
Conductivity	A	umhos/cm	1690	NA	1320	8120	1250	648	4090	1310	1230	1740
Sulfate	A	mg/L	385	NA	309	4220	232	139	114	239	349	220
Fluoride	A,B	mg/L	0.187	4.0	0.187	<1.50	<0.150	0.0913	0.159	<0.150	P1 0.153	0.239
Antimony	В	mg/L	0.005	0.01	<0.00500	<0.0500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
Arsenic	B	mg/L	0.0009	0.01	0.000421	<0.0100	0.00399	0.000606	0.00028	0.000357	J 0.000341	0.000542]
Barium	В	mg/L	0.0621	2.0	0.0347	0.032	0.109	0.0633	0.356	0.0633	0.0532	0.0747
Beryllium	В	mg/L	Detection	0.004	<0.00100	<0.0100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Cadmium	В	mg/L	0.001	0.005	0.000216	<0.0100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Chromium	В	mg/L	Detection	0.1	<0.0200	<0.200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200
Cobalt	В	mg/L	0.00738	0.006**	0.0038	<0.0200	0.00617	0.000206	J <0.00200	<0.00200	<0.00200	0.000716 J
Lead	B	mg/L	0.002	0.15**	<0.00200	<0.0200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
Lithium	В	mg/L	0.037	0.04**	<0.0150	0.0211	0.0184	0.0111 .	0.0117	<0.0150	<0.0150	0.0971
Mercury	В	mg/L	0.0002	0.002	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200
Molybdenum	В	mg/L	0.005	0.01**	0.000939	0.186	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	0.00111
Radium	В	pCi/L	3.838	5	0.2766	0.795	1.711	1.343	0.2454	0.3612	ND	ND
Selenium	В	mg/L	0.002	0.05	<0.00200	0.0918	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
Thallium	В	mg/L	0.001	0.002	<0.00100	<0.0100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100

Table 4

Table 5 Groundwater Seepage Velocity Calculation Grand River Dam Authority Landfill Grand River Energy Center - Mayes County, Oklahoma

Parameter	Value	Units	
	Maximum	0.0025	cm/s
Hydraulic Conductivity	Average	0.0006	cm/s
	Groundwater Elevation MW93-1	610.15	ft
Hydraulic Gradient (I)	Groundwater Elevation MW22-06	583.79	ft
	Distance	2122	ft
Effective Porosity	Average	0.221	unitless

Calculated Seepage Velocity	cm/s	ft/year		
Maximum	0.00014	145.2		
Average	0.00003	34.5		

Table 6 Statistical Analysis Summary April 2022 Semi-Annual Event Grand River Dam Authority Landfill Grand River Energy Center - Mayes County, Oklahoma

Parameter		Units	BG	GWPS	Inter-Well/ Background Exceedance	Intra-Well Exceedance	GWPS Exceedance
Alkalinity	A	mg/L	550	NA	MW93-3	-	
Boron	Α	mg/L	0.499	NA	MW93-2	77 .)	77.
Calcium	Α	mg/L	670	NA	5.55		র হ
					MW93-2		
Chloride	Α	mg/L	63	NA	MW93-3	÷	0151
					MW03-2		
					MW93-2		
Total Dissolved Solids	Α	mg/L	1130	NA	MW93-3	***	*-:
					MW03-2		
рН	А	su	7.17	NA	MW93-2)	
· · · · · · · · · · · · · · · · · · ·					MW93-2		
Sodium	Α	mg/L	130	NA	MW93-3		
					MW03-2		
		umhos/cm			MW93-2		
Specific Conductance	A		1888	NA	MW93-3	423	
					MW03-1		
Sulfate	A	mg/L	880	NA	MW93-2		1992
Fluoride	A,B	mg/L	0.25	4.0	MW93-2	**	
Antimony	В	mg/L	Detection	0.01	(44)		
Arsenic	В	mg/L	0.0109	0.01	MW93-2		MW93-2
		mg/l	0.0405	2.0	MW93-2	Caller (
Barium	В	mg/L	0.0405	2.0	MW93-3		
Beryllium	В	mg/L	Detection	0.004	UNITS	175 (275
Cadmium	В	mg/L	Detection	0.005	17		
Chromium	В	mg/L	Detection	0.1	175		
Cobalt	В	mg/L	Detection	0.006**	35 5		-
Lead	В	mg/L	Detection	0.15**			
					MW93-2	A414/02 2	
Lithium	В	mg/L	0.0236	0.04**	MW93-3	NIV/02 2	MW93-3**
					MW03-2	1010003-2	
	P		0.0002	0.000	MW93-3	MM02-3	MM03-2
Wercury	в	mg/L	0.0002	0.002	MW03-2	10100 33-3	1010003-2
Molybdenum	В	mg/L	0.01	0.01**	MW93-2	**	MW93-2**
Padium 226/229 Combined	р	pCi/l	2.24	5	MW93-2	-	
Radium 220/228 Compined	•		2.24		MW03-2		
Selenium	В	mg/L	Detection	0.05	55 5		
Thallium	В	mg/L	Detection	0.002			-

MCL - Maximum Contaminant Level (MCL) according to 40 CFR 141.62 and 141.66.

**Coal Ash Rule 83 FR 364.35 July 30, 2018 health-based GWPS for Co, Pb, Li, Mo, Effective August 29, 2018 NA - Not Applicable

BG - Background Concentration observed in MW93-1

A - Appendix A Constituents for Detection Monitoring

B - Appendix B Constituents for Assessment Monitoring

Table 7 Statistical Analysis Summary October 2022 Annual Event Grand River Dam Authority Landfill Grand River Energy Center - Mayes County, Oklahoma

Parameter		Units	BG	MCL/GWPS	Inter-Well/ Background Exceedance	Intra-Well Exceedance	MCL/GWPS Exceedance
Alkalinity	mg/L	550	NA	MW93-3	1.000	**	
Boron	A	mg/L	0.499	NA	MW93-2	6. 51 76	
Calcium	Α	mg/L	670	NA		1.00	
					MW93-2		
Chloride	Α	mg/L	63	NA	MW93-3		
					MW03-2		· · · · · · · · · · · · · · · · · · ·
					MW93-2		
Total Dissolved Solids	А	mg/L	1130	NA	MW93-3	++:	
					MW03-2	L	
рН	Α	su	7.17	NA	MW93-2		
					MW93-2		
Sodium	Α	mg/L	130	NA	MW93-3	MW93-2	
					MW03-2		
		umhos/cm			MW93-2		
Specific Conductance	Δ		1888	NA	MW93-3	MW93-2	-
Specific conductance	~				MW03-1	MW93-3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					MW03-2		
Sulfate	Α	mg/L	880	NA	MW93-2	MW93-2	~~
Fluoride	A,B	mg/L	0.25	4.0	MW93-3		~
Antimony	В	mg/L	Detection	0.01		 :	
Arsenic	В	mg/L	0.0109	0.01	MW93-2		MW93-2
Parium	B	mal	0.0405	2.0	MW93-2	227	
barlum	D	IIIg/ L	0.0405	2.0	MW93-3		
Beryllium	В	mg/L	Detection	0.004		77	-
Cadmium	В	mg/L	Detection	0.005		77	
Chromium	В	mg/L	Detection	0.1		7 7	
Cobalt	В	mg/L	Detection	0.006**		77	
Lead	В	mg/L	Detection	0.15**			
Lithium	В	mg/L	0.0236	0.04**	MW93-3		MW93-3**
Mercury	В	mg/L	0.0002	0.002	MW93-3 MW03-2	MW93-3	5
Molybdenum E		mg/L	0.01	0.01**	MW93-2	MW93-2	MW93-2**
Radium 226/228 Combined	В	pCi/L	2.24	5	MW93-2		
Selenium	В	mg/L	Detection	0.05			
Thallium	В	mg/L	Detection	0.002	522		

MCL - Maximum Contaminant Level (MCL) according to 40 CFR 141.62 and 141.66.

**Coal Ash Rule 83 FR 364.35 July 30, 2018 health-based GWPS for Co, Pb, Li, Mo, Effective August 29, 2018 NA - Not Applicable

BG - Background Concentration observed in MW93-1

A - Appendix A Constituents for Detection Monitoring

B - Appendix B Constituents for Assessment Monitoring

Table 8 Statistical Analysis Summary using Data from New Wells October 2022 Annual Event Grand River Dam Authority Landfill Grand River Energy Center - Mayes County, Oklahoma

Parameter		Units	BG	GWPS/MC L	Inter-Well/ Background Exceedance	intra-Well Exceedance	GWPS/MCL Exceedance
Alkalinity	Α	mg/L	637	NA	.	22 C	322
Boron	A	mg/L	0.339	NA	MW22-02 MW93-2	MW22-02	
Calcium	Α	mg/L	323	NA	MW22-02	MW22-02	
					MW22-02	77 .	
					MW22-03		
					MW22-04		
					MW22-05		
					MW22-06		
Chloride	Α	mg/L	10.2		MW22-08		
				ΝΑ	MW22-02		
Total Dissolved Solids	Α	mg/L	1230		MW22-05		
pН	Α	su	6.53, 7.67	NA			
					MW22-02	MW22-05	
					MW22-03	MW22-07	
				ΝΔ	MW22-04	MW22-08	
					MW22-05		
					MW22-07		
Sodium	Α	mg/L	102		MW22-08		
					MW22-02	~	
				NA	MW22-05		
Specific Conductance	Α	umhos/cm	1690		MW22-08		
Sulfate	Α	mg/L	385	NA	MW22-02		277
Fluoride	A,B	mg/L	0.187	4.0	MW22-02 MW22-08		550
Antimony	В	mg/L	Detection	0.01	:=.e.		377
Arsenic	В	mg/L	0.0009	0.01	MW22-03		St87
					MW22-03		1998 ()
					MW22-04		
				2.0	MW22-05		
					MW22-06		
Barium	В	mg/L	0.0621		MW22-08		
Beryllium	В	mg/L	Detection	0.004		~ .	
Cadmium	В	mg/L	Detection	0.005			
Chromium	В	mg/L		0.1	122		
Cobalt	В	mg/L	0.00738	0.006**			MW22-03
Lead	В	mg/L	Detection	0.15**			
Lithium	В	mg/L	0.037	0.04**	MW22-08	MW22-08	MW22-08
Mercury	В	mg/L	Detection	0.002			**
Molybdenum	В	mg/L	0.005	0.01**	MW22-02		MW22-02
Radium 226/228 Combined	В	pCi/L	3.002	5	MW22-03		24:
Selenium	В	mg/L	0.002	0.05	MW22-02		MW22-02
Thallium	В	mg/L	0.001	0.002			**

MCL - Maximum Contaminant Level (MCL) according to 40 CFR 141.62 and 141.66.

**Coal Ash Rule 83 FR 364.35 July 30, 2018 health-based GWPS for Co, Pb, Li, Mo, Effective August 29, 2018 NA - Not Applicable

BG - Background Concentration observed in MW93-1

A - Appendix A Constituents for Detection Monitoring

B - Appendix B Constituents for Assessment Monitoring

Figures

